New Paths from Splay to Dynamic Optimality

Abstract

Consider the task of performing a sequence of searches in a binary search tree. After each search, an algorithm is allowed to arbitrarily restructure the tree, at a cost proportional to the amount of restructuring performed. The cost of an execution is the sum of the time spent searching and the time spent optimizing those searches with restructuring operations. This notion was introduced by Sleator and Tarjan in (JACM, 1985), along with an algorithm and a conjecture. The algorithm, Splay, is an elegant procedure for performing adjustments while moving searched items to the top of the tree. The conjecture, called "dynamic optimality," is that the cost of splaying is always within a constant factor of the optimal algorithm for performing searches. The conjecture stands to this day. In this work, we attempt to lay the foundations for a proof of the dynamic optimality conjecture.Comment: An earlier version of this work appeared in the Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. arXiv admin note: text overlap with arXiv:1907.0630

    Similar works

    Full text

    thumbnail-image

    Available Versions