We present a modified nudged elastic band routine that can reduce the number
of force calls by more than 50% for bands with non-uniform convergence. The
method, which we call "dyNEB", dynamically and selectively optimizes states
based on the perpendicular forces and parallel spring forces acting on that
region of the band. The convergence criteria are scaled to focus on the region
of interest, i.e., the saddle point, while maintaining continuity of the band
and avoiding truncation. We show that this method works well for solid state
reaction barriers---non-electrochemical in general and electrochemical in
particular---and that the number of force calls can be significantly reduced
without loss of resolution at the saddle point