A unified theoretical description of ballistic and diffusive carrier
transport in parallel-plane semiconductor structures is developed within the
semiclassical model. The approach is based on the introduction of a
thermo-ballistic current consisting of carriers which move ballistically in the
electric field provided by the band edge potential, and are thermalized at
certain randomly distributed equilibration points by coupling to the background
of impurity atoms and carriers in equilibrium. The sum of the thermo-ballistic
and background currents is conserved, and is identified with the physical
current. The current-voltage characteristic for nondegenerate systems and the
zero-bias conductance for degenerate systems are expressed in terms of a
reduced resistance. For arbitrary mean free path and arbitrary shape of the
band edge potential profile, this quantity is determined from the solution of
an integral equation, which also provides the quasi-Fermi level and the
thermo-ballistic current. To illustrate the formalism, a number of simple
examples are considered explicitly. The present work is compared with previous
attempts towards a unified description of ballistic and diffusive transport.Comment: 23 pages, 10 figures, REVTEX