We apply the mechanically controllable break junctions technique to
investigate the transition from tunneling to direct contact in tungsten. This
transition is quite different from that of other metals and is determined by
the local electronic properties of the tungsten surface and the relief of the
electrodes at the point of their closest proximity. The conductance traces show
a rich variety of patterns from the avalanche-like jump to a mesoscopic contact
to the completely smooth transition between direct contact and tunneling. Due
to the occasional absence of an adhesive jump the conductance of the contact
can be continuously monitored at ultra-small electrode separations. The
conductance histograms of tungsten are either featureless or show two distinct
peaks related to the sequential opening of spatially separated groups of
conductance channels. The role of surface states of tungsten and their
contribution to the junction conductance at sub-Angstrom electrode separations
are discussed.Comment: 6 pages, 6 figure