ECoR: Energy-Aware Collaborative Routing for Task Offload in Sustainable UAV Swarms

Abstract

In this work, we propose an Energy-aware Collaborative Routing (ECoR) scheme for optimally handling task offloading between source and destination UAVs in a grid-locked UAV swarm. We divide the proposed scheme into two parts -- routing path discovery and routing path selection. The scheme selects the most optimal path between a source and destination from a massive set of all possible paths, based on the maximization of residual energy of UAVs along a selected path. This routing path selection ensures balanced energy utilization between members of the UAV swarm and enhances the overall path lifetime without incurring additional delays in doing so. Actual readings from our small-scale UAV swarm testbed are utilized to emulate a large-scale scenario and analyze the behavior of our proposed scheme. Upon comparison of the ECoR scheme with broadcast-based routing and the shortest path based routing, we observe better sustainability regarding the longevity of the UAV lifetimes in the swarm, optimized individual UAV, as well as reduced collective path-based energy consumption, all the while having comparable transmission delays to the shortest path based scheme

    Similar works