We study a generalization of a Thomson problem of n particles confined to a
sphere and interacting by a 1/r^g potential. It is found that for g \le 1 the
electrostatic repulsion expels all the charges to the surface of the sphere.
However for g>1 and n>n_c(g) occupation of the bulk becomes energetically
favorable. It is curious to note that the Coulomb law lies exactly on the
interface between these two regimes