Towards Faster Data Transfer by Spoof Plasmonics

Abstract

With the emergence of complex architectures in modern electronics such as multi-chip modules, the increasing electromagnetic cross-talk in the circuitry causes a serious issue for high-speed, reliable data transfer among the chips. This thesis aims at developing a cross-talk resilient communication technology by utilizing a special form of electromagnetic mode, called spoof surface plasmon polariton for information transfer. The technique is based on the fact that a metal wire with periodic sub-wavelength patterns can support the propagation of confined electromagnetic mode, which can suppress cross-talk noise among the adjacent channels; and thus outperform conventional electrical interconnects in a parallel, high channel density data-bus. My developed model shows that, with 1 THz carrier frequency, the optimal design of cross-talk resilient spoof plasmon data-bus would allow each channel to support as high as 300 Gbps data, the bandwidth density can reach 1 Tbps per millimeter width of data-bus, and the digital pulse modulated carrier can travel more than 5 mm distance on the substrate. I have demonstrated that spoof plasmonic interconnects, comprised of patterned metallic conductors, can simultaneously accommodate electronic TEM mode, which is superior in cross-talk suppression at low-frequencies; and spoof plasmon mode, which is superior at high-frequencies. The research work is divided into two complementary parts: developing a theory for electromagnetic property analysis of spoof plasmon waveguide, and manipulating these properties for high-speed data transfer. Based on the theory developed, I investigated the complex interplay among various figure-of-merits of data transfer in spoof plasmonics, such as bandwidth density, propagation loss, thermal noise, speed of modulation, etc. My developed model predicts that with the availability of 1 THz carrier, the bit-error-rate of spoof plasmon data bus, subject to thermal noise would be sim10βˆ’8sim10^{-8} while the Shannon information capacity of the bus would be 1010 Tbps/mm. The model also predicts that, by proper designing of the modulator, it can be possible to alter the transmission property of the waveguide over one-fifth (1/51/5) of the spoof plasmon band which spans from DC frequency to the frequency of spoof plasmon resonance. To exemplify, if the spoof plasmon resonance is set at 11 THz, then we can achieve more than 200200 Gbps speed of modulation with a very high extinction ratio, assuming the switching latency of the transistors at our disposal is negligible to the time-resolution of interest. We envision spoof plasmonic interconnects to constitute the next generation communication technology that will be transferring data at hundreds of Gigabit per second (Gbps) speed among different chips on a multi-chip module (MCM) carrier or system-on-chip (SoC) packaging.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163041/1/srjoy_1.pd

    Similar works

    Full text

    thumbnail-image