Adaptive Imaging with a Cylindrical, Time-Encoded Imaging System

Abstract

Most imaging systems for terrestrial nuclear imaging are static in that the design of the system and the data acquisition protocol are defined prior to the experiment. Often, these systems are designed for general use and not optimized for any specific task. The core concept of adaptive imaging is to modify the imaging system during a measurement based on collected data. This enables scenario specific adaptation of the imaging system which leads to better performance for a given task. This dissertation presents the first adaptive, cylindrical, time-encoded imaging (c-TEI) system and evaluates its performance on tasks relevant to nuclear non-proliferation and international safeguards. We explore two methods of adaptation of a c-TEI system, adaptive detector movements and adaptive mask movements, and apply these methods to three tasks, improving angular resolution, detecting a weak source in the vicinity of a strong source, and reconstructing complex source scenes. The results indicate that adaptive imaging significantly improves performance in each case. For the MATADOR imager, we find that adaptive detector movements improve the angular resolution of a point source by 20% and improve the angular resolution of two point sources by up to 50%. For the problem of detecting a weak source in the vicinity of a strong source, we find that adaptive mask movements achieve the same detection performance as a similar, non-adaptive system in 20%-40% less time, depending on the relative position of the weak source. Additionally, we developed an adaptive detection algorithm that doubles the probability of detection of the weak source at a 5% false-alarm rate. Finally, we applied adaptive imaging concepts to reconstruct complex arrangements of special nuclear material at Idaho National Laboratory. We find that combining data from multiple detector positions improves image uniformity of extended sources by 38% and reduces the background noise by 50%. We also demonstrate 2D (azimuthal and radial) imaging in a crowded source scene. These promising experimental results highlight the potential for adaptive imaging using a c-TEI system and motivate further research toward specific, real-world applications.PHDNuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163009/1/nirpshah_1.pd

    Similar works

    Full text

    thumbnail-image