Partitioned time integration methods for hardware in the loop based on linearly implicit L-Stable Rosenbrock methods

Abstract

Hardware in the loop based on dynamic substructuring was conceived to be a hybrid numerical-experimental technique to simulate the non-linear behaviour of an emulated structure. Its challenge is to ensure that both numerical and physical substructures interact in real time by means of actuators –transfer systems-. With this objective in mind, the development and implementation of partitioned real-time compatible Rosenbrock algorithms are presented in this paper. In detail, we shortly introduce monolithic linearly implicit L-stable algorithms with two stages; and in view of the analysis of complex emulated structures, we present a novel interfield partitioned algorithm. Both the stability and accuracy properties of the proposed algorithm are examined through analytical and numerical studies carried out on Single-DoF model problems. Moreover, a novel test rig conceived to perform both linear and nonlinear substructure tests is introduced, and tests on a two-DoF split-mass system are illustrated. The drawbacks of this algorithm are underlined and improvements are introduced on a companion solution procedure

    Similar works