Reversible CO<inf>2</inf> absorption by the 6H perovskite Ba <inf>4</inf>Sb<inf>2</inf>O<inf>9</inf>

Abstract

A novel compound for carbon capture and storage (CCS) applications, the 6H perovskite Ba4Sb2O9, was found to be able to absorb CO2 through a chemical reaction at 873 K to form barium carbonate and BaSb2O6. This absorption was shown to be reversible through the regeneration of the original Ba4Sb 2O9 material upon heating above 1223 K accompanied by the release of CO2. A combined synchrotron X-ray diffraction, thermogravimetric, and microscopy study was carried out to characterize first the physical absorption properties and then to analyze the structural evolution and formation of phases in situ. Importantly, through subsequent carbonation and regeneration of the material over 100 times, it was shown that the combined absorption and regeneration reactions proceed without any significant reduction in the CO2 absorption capacity of the material. After 100 cycles the capacity of Ba4Sb2O9 was ∼0.1 g (CO 2)/g (sorbent), representing 73% of the total molar capacity. This is the first report of a perovskite-type material showing such good properties, opening the way for studies of new classes of inorganic oxide materials with stable and flexible chemical compositions and structures for applications in carbon capture. © 2013 American Chemical Society

    Similar works