research

Metal-to-semiconductor transition in squashed armchair carbon nanotubes

Abstract

We investigate electronic transport properties of the squashed armchair carbon nanotubes, using tight-binding molecular dynamics and Green's function method. We demonstrate a metal-to-semiconductor transistion while squashing the nanotubes and a general mechanism for such transistion. It is the distinction of the two sublattices in the nanotube that opens an energy gap near the Fermi energy. We show that the transition has to be achieved by a combined effect of breaking of mirror symmetry and bond formation between the flattened faces in the squashed nanotubes.Comment: 4 papges, 4 figures, to appear in Phys. Rev. Let

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019