CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Penetration depth of shielding currents due to crossed magnetic fields in bulk (RE)-Ba-Cu-O superconductors
Authors
,
,
+15 more
,
,
,
,
,
MD Ainslie
M Boll
DA Cardwell
AR Dennis
JH Durrell
M Filipenko
KY Huang
F Perez
Y Shi
J Srpčič
Publication date
12 February 2019
Publisher
'IOP Publishing'
Abstract
© 2019 IOP Publishing Ltd. Exposure to time-varying magnetic fields causes shielding currents to flow beneath the surface of a superconductor up to a field-dependent penetration depth. In trapped field applications of bulk superconductors, in which the decay of trapped field due to external AC magnetic fields is caused by current redistribution (and not by helating and temperature rise), this penetration depth determines the degree of current redistribution in the superconductor and, in turn, the degree of decay of trapped field. In this study we propose and validate experimentally a model to explain the rate of decay of trapped field in a single grain bulk GdBa 2 Cu 3 O 7-δ (GdBCO) superconductor exposed to an AC magnetic field in a crossed-field configuration. The model is based on calculating the time dependence of the trapped field using the Biot-Savart law and assuming that the time dependence of the current density changes at the depth of penetration of the induced shielding currents. Inside the superconductor, where the crossed-field has not penetrated, the time dependence is assumed to be logarithmic and the decay of current density due to flux creep, whereas within the penetration depth of the surface the time dependence is assumed to be exponential and the decay of current density due to its redistribution. The penetration depth was measured separately using SQUID magnetometry and used as an input parameter to the model. The model was compared subsequently with measurements of the decay of trapped field and found to be in excellent agreement with the observed behaviour
Similar works
Full text
Available Versions
CUED - Cambridge University Engineering Department
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:generic.eprints.org:104386...
Last time updated on 15/07/2020