research

Velocity fluctuations in cooling granular gases

Abstract

We study the formation and the dynamics of correlations in the velocity field for 1D and 2D cooling granular gases with the assumption of negligible density fluctuations (``Homogeneous Velocity-correlated Cooling State'', HVCS). It is shown that the predictions of mean field models fail when velocity fluctuations become important. The study of correlations is done by means of molecular dynamics and introducing an Inelastic Lattice Maxwell Models. This lattice model is able to reproduce all the properties of the Homogeneous Cooling State and several features of the HVCS. Moreover it allows very precise measurements of structure functions and other crucial statistical indicators. The study suggests that both the 1D and the 2D dynamics of the velocity field are compatible with a diffusive dynamics at large scale with a more complex behavior at small scale. In 2D the issue of scale separation, which is of interest in the context of kinetic theories, is addressed.Comment: 24 pages, 16 figures, conference proceedin

    Similar works

    Full text

    thumbnail-image

    Available Versions