We study the vertex cover problem on finite connectivity random graphs by
zero-temperature cavity method. The minimum vertex cover corresponds to the
ground state(s) of a proposed Ising spin model. When the connectivity
c>e=2.718282, there is no state for this system as the reweighting parameter y,
which takes a similar role as the inverse temperature \beta in conventional
statistical physics, approaches infinity; consequently the ground state energy
is obtained at a finite value of y when the free energy function attains its
maximum value. The minimum vertex cover size at given c is estimated using
population dynamics and compared with known rigorous bounds and numerical
results. The backbone size is also calculated.Comment: 7 pages (including 3 figures and 1 table), REVTeX4 forma