CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
An evaluation of Dasher with a high-performance language model as a gaze communication method
Authors
,
PO Kristensson
D Rough
K Vertanen
Publication date
1 January 2014
Publisher
Abstract
Dasher is a promising fast assistive gaze communication method. However, previous evaluations of Dasher have been inconclusive. Either the studies have been too short, involved too few participants, suffered from sampling bias, lacked a control condition, used an inappropriate language model, or a combination of the above. To rectify this, we report results from two new evaluations of Dasher carried out using a Tobii P10 assistive eye-tracker machine. We also present a method of modifying Dasher so that it can use a state-of-the-art long-span statistical language model. Our experimental results show that compared to a baseline eye-typing method, Dasher resulted in significantly faster entry rates (12.6 wpm versus 6.0 wpm in Experiment 1, and 14.2 wpm versus 7.0 wpm in Experiment 2). These faster entry rates were possible while maintaining error rates comparable to the baseline eye-typing method. Participants' perceived physical demand, mental demand, effort and frustration were all significantly lower for Dasher. Finally, participants significantly rated Dasher as being more likeable, requiring less concentration and being more fun. © 2014 ACM
Similar works
Full text
Available Versions
CUED - Cambridge University Engineering Department
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:generic.eprints.org:748875...
Last time updated on 15/07/2020