The long-term mechanical behaviour of a number of fluorocarbon and gut harp strings has been examined, and the results compared with a previous study of rectified nylon strings. The stretching behaviour of the three materials was studied via different measures of the Young's modulus; with test time scales on the order of weeks, minutes, and milliseconds. The strings were subjected to cyclic variations in temperature, enabling various aspects of their thermal behaviour to be investigated. The effects of humidity changes on gut strings were also examined. The behaviour of the fluorocarbon strings was found to be similar in many ways to that of the nylon strings, despite their different chemical formulation and significantly higher density. In particular, the faster measures of Young's modulus were found to show an almost identical strong variation with the applied stress; while the thermal behaviour of both materials was largely determined by the balance between opposing effects associated with thermal contraction and thermal variations in the Young's modulus. The gut strings showed some similarities of behaviour to the synthetic materials, but also major differences. All three measures of the Young's modulus remained constant as the applied stress was increased. The gut strings were far more sensitive to changes in humidity than the synthetic materials, although some of the results, especially the thermal tuning sensitivity of the strings when held at constant length, displayed remarkable stability under changing humidity. The observed behaviour suggests very strongly that there is significant coupling between humidity-related changes in the linear density of a gut string and complementary changes in its tension