research

Constraints on Fluctuations in Sparsely Characterized Biological Systems.

Abstract

Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.The work was supported by grant 1137676 from the Division of Mathematical Sciences at the National Science Foundation, and grant GM081563 from the National Institutes of Health.This is the final version of the article. It first appeared from the American Physical Society via http://dx.doi.org/10.1103/PhysRevLett.116.05810

    Similar works