Automated detection of pavement patches utilizing support vector machine classification

Abstract

The efficient condition assessment of road networks is crucial to prevent pavement distresses which can cause a spectrum of detrimental effects. The need for automation of the underlying process is originated from the costly, time-consuming and dangerous current methods. Presented herein is the automation of the patch detection process, which is essential for pavement surface evaluation and rating. The method is based on Support Vector Machine (SVM) Classification. The road pavement images are divided into square blocks and the SVM is trained and tested by feature vectors generated from these blocks. The feature vectors consist of the histogram and two texture descriptors, using the discrete cosine transform (DCT) and the Gray-Level Co-Occurrence Matrix (GLCM). The output is a binary image, where each image block is classified as patch or no-patch. The performance of the proposed MatlabTM implementation, which uses data collected from real-life urban networks, is rated by a detection accuracy of 81.97 %, a precision of 64.21 %, and a recall of 91.21 %

    Similar works