CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors
Authors
,
A Ahnood
+3 more
A Madan
A Nathan
Y Suzuki
Publication date
31 May 2012
Publisher
Abstract
The growth of low temperature silicon nitride using radio frequency (RF) plasma enhanced chemical vapour deposition (PECVD) is associated with high porosity and surface roughness due to the short surface diffusion length of adsorbed radicals during the deposition. In this work we present pulsed-RF PECVD as a means of achieving a film with smoother surface and reduced density of voids. The growth process and the longer surface diffusion length are discussed as the main reason behind improvement of film density while maintaining the substrate temperatures. The deposited films exhibit improved electrical performance with 72% reduction in breakdown probability compared with conventional continuous-wave RF PECVD films. A low interfacial defect density with a field effect mobility of 1.1 cm2/V.s and subthreshold slope of 0.3 V/dec, was achieved when used as a gate dielectric in thin film transistors. © 2012 Elsevier B.V. All rights reserved
Similar works
Full text
Available Versions
CUED - Cambridge University Engineering Department
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:generic.eprints.org:653907...
Last time updated on 15/07/2020