The National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) database contains a large amount of information, regarding the way of life, medical conditions, etc., of a representative sample of the U.S. population. In this paper, we are interested in seeking the hidden causes behind the suicide attempts, for which we propose to model the subjects using a nonparametric latent model based on the Indian Buffet Process (IBP). Due to the nature of the data, we need to adapt the observation model for discrete random variables. We propose a generative model in which the observations are drawn from a multinomial-logit distribution given the IBP matrix. The implementation of an efficient Gibbs sampler is accomplished using the Laplace approximation, which allows integrating out the weighting factors of the multinomial-logit likelihood model. Finally, the experiments over the NESARC database show that our model properly captures some of the hidden causes that model suicide attempts