research

Pressure induced Raman and fluorescence singularities in LiYF4LiYF_4

Abstract

The pressure effect on the fluoride scheelite laser host LiYF4LiYF_4 is studied at room temperature up to 26 GPa by Raman scattering and up to 40 GPa by P3+P^{3+} fluorescence of doped sample. The Raman spectra exhibit three singularities at the vicinity of 6 GPa, 10-12 GPa and 16-17 GPa. The samples pressurized to 21 GPa or higher do not recover the original phase after being released, giving more Raman lines than original samples. The luminescence spectra of P3+P^{3+} are collected in the energy range corresponding to following transitions 3P0,1−−3H4,5,6^3P_{0,1}--^3H_{4,5,6}, 1D2−−3H4^1D_2--^3H_4 and 3P0−−3F2^3P_0--^3F_2. Singularities are observed in the vicinity of 6 GPa, 10 GPa, 16 GPa, 23 GPa in agreement with the Raman study. Moreover, an irreversible transition occurs at 23 GPa. The samples pressurized to above 26 GPa become amorphous when released and all the sharp lines disappear. Above 31 GPa, the spectra at high pressures show only some broad bands corresponding to transitions between two multiplets of the 4F2^4F_2 configuration of Pr3+Pr^{3+}. These singularities suggest possible phase transformations leading to lowering of the lattice symmetry.Comment: 12 pages, 13 figures, 2 table, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions