We present scanning tunneling spectroscopy and microscopy measurements at low
temperatures in the borocarbide materials RNi2B2C (R=Y, Lu). The characteristic
strong coupling structure due to the pairing interaction is unambiguously
resolved in the superconducting density of states. It is located at the
superconducting gap plus the energy corresponding to a phonon mode identified
in previous neutron scattering experiments. These measurements also show that
this mode is coupled to the electrons through a highly anisotropic
electron-phonon interaction originated by a nesting feature of the Fermi
surface. Our experiments, from which we can extract a large electron-phonon
coupling parameter lambda (between 0.5 and 0.8), demonstrate that this
anisotropic electron-phonon coupling has an essential contribution to the
pairing interaction. The tunneling spectra show an anisotropic s-wave
superconducting gap function.Comment: 5 pages, 3 figure