research

Quantum Gauged Neural Network: U(1) Gauge Theory

Abstract

A quantum model of neural network is introduced and its phase structure is examined. The model is an extension of the classical Z(2) gauged neural network of learning and recalling to a quantum model by replacing the Z(2) variables, Si=±1S_i = \pm1 of neurons and Jij=±1J_{ij} =\pm1 of synaptic connections, to the U(1) phase variables, Si=exp(iϕi)S_i = \exp(i\phi_i) and Jij=exp(iθij)J_{ij} = \exp(i\theta_{ij}) . These U(1) variables describe the phase parts of the wave functions (local order parameters) of neurons and synaptic connections. The model takes the form similar to the U(1) Higgs lattice gauge theory, the continuum limit of which is the well known Ginzburg-Landau theory of superconductivity. Its current may describe the flow of electric voltage along axons and chemical materials transfered via synaptic connections. The phase structure of the model at finite temperatures is examined by the mean-field theory, and Coulomb, Higgs and confinement phases are obtained. By comparing with the result of the Z(2) model, the quantum effects is shown to weaken the ability of learning and recalling.Comment: 8 pages, 4 figures: Revised with a new referenc

    Similar works

    Full text

    thumbnail-image

    Available Versions