research

Oscillating Superfluidity of Bosons in Optical Lattices

Abstract

We follow up on a recent suggestion by C. Orzel et. al., Science, 291, 2386 (2001), whereby bosons in an optical lattice would be subjected to a sudden parameter change from the Mott to the superfluid phase. We analyze the Bose Hubbard model with a modified coherent states path integral which can escribe - both - phases. The saddle point theory yields collective oscillations of the uniform superfluid order parameter. These would be seen in time resolved interference patterns made by the released gas. We calculate the collective oscillation's damping rate by phason pair emission. In two dimensions the overdamped region largely overlaps with the quantum critical region. Measurements of critical dynamics on the Mott side are proposed.Comment: 4 pages 1 eps figures; Final version as appears in PRL. Added discussion on spontaneous generation of vortice

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020