We discuss the physics of RNA as described by its secondary structure. We
examine the static properties of a homogeneous RNA-model that includes pairing
and base stacking energies as well as entropic costs for internal loops. For
large enough costs the model exhibits a thermal denaturation transition which
we analyze in terms of the radius of gyration. We point out an inconsistency in
the standard approach to RNA secondary structure prediction for large
molecules. Under an external force a second order phase transition between a
globular and an extended phase takes place. A Harris-type criterion shows that
sequence disorder does not affect the correlation length exponent while the
other critical exponents are modified in the glass phase. However, at high
temperatures, on a coarse-grained level, disordered RNA is well described by a
homogeneous model. The characteristics of force-extension curves are discussed
as a function of the energy parameters. We show that the force transition is
always second order. A re-entrance phenomenon relevant for real disordered RNA
is predicted.Comment: accepted for publication in Phys. Rev.