We consider a simple model of a classical harmonic oscillator coupled to a
field. In standard approaches Langevin-type equations for {\it bare} particles
are derived from Hamiltonian dynamics. These equations contain memory terms and
are time-reversal invariant. In contrast the phenomenological Langevin
equations have no memory terms (they are Markovian equations) and give a time
evolution split in two branches (semigroups), each of which breaks time
symmetry. A standard approach to bridge dynamics with phenomenology is to
consider the Markovian approximation of the former. In this paper we present a
formulation in terms of {\it dressed} particles, which gives exact Markovian
equations. We formulate dressed particles for Poincar\'e nonintegrable systems,
through an invertible transformation operator \Lam introduced by Prigogine
and collaborators. \Lam is obtained by an extension of the canonical
(unitary) transformation operator U that eliminates interactions for
integrable systems. Our extension is based on the removal of divergences due to
Poincar\'e resonances, which breaks time-symmetry. The unitarity of U is
extended to ``star-unitarity'' for \Lam. We show that \Lam-transformed
variables have the same time evolution as stochastic variables obeying Langevin
equations, and that \Lam-transformed distribution functions satisfy exact
Fokker-Planck equations. The effects of Gaussian white noise are obtained by
the non-distributive property of \Lam with respect to products of dynamical
variables. Therefore our method leads to a direct link between dynamics of
Poincar\'e nonintegrable systems, probability and stochasticity.Comment: 24 pages, no figures. Made more connections with other work.
Clarified ideas on irreversibilit