Cognitive Workload Analysis of Fighter Aircraft Pilots in Flight Simulator Environment

Abstract

Maintaining and balancing an optimal level of workload is essential for completing the task productively. Fighter aircraft is one such example, where the pilot is loaded heavily both physically (due to G manoeuvering) and cognitively (handling multiple sensors, perceiving, processing and multi-tasking including communications and handling weapons) to fulfill the combat mission requirements. This cognitive demand needs to be analysed to understand the workload of fighter pilot. Objective of this study is to analyse dynamic workload of fighter pilots in a realistic high-fidelity flight simulator environment during different flying workload conditions. The various workload conditions are (a) normal visibility, (b) low visibility, (c) normal visibility with secondary task, and (d) low visibility with secondary task. Though, pilot’s flying performance score was good, the physiological measure like heart rate variability (HRV) features and subjective assessment (NASA-TLX) components are found to be statistically significant (p<0.05) between tasks. HRV features such as SD2, SDNN, VLF and total power are found to be significant at all task load conditions. The features LFnu and HFnu are able to differentiate the effect of low visibility and secondary cognitive task, which was imposed as increased task in this study. This result benefits to understand the pilot’s task and performance at each flying phase and their cognitive demands during dynamic workload using HRV, which could assist pilot’s training schedule in optimal way on simulators as well as in actual flight conditions

    Similar works