Dynamics of piecewise increasing contractions

Abstract

13 pages, 2 figuresLet 0<λ<10<\lambda<1 and I1=[a0,a1),…,Ik=[ak−1,ak)I_1=[a_0,a_1),\ldots,I_{k}= [a_{k-1},a_k) be a partition of the interval I=[0,1)I=[0,1) into k≥1k\ge1 subintervals. Let f:I→If:I\to I be a map where each restriction f∣Iif|_{I_i} is an increasing λ\lambda-Lipschitz function for i=1,…,ki=1,\ldots,k. We prove that any piecewise increasing contraction ff admits at most kk periodic orbits, where the upper bound is sharp. Our second result concerns piecewise λ\lambda-affine maps. Let b1,…,bkb_1,\ldots,b_k be real numbers. Let Fλ:I→RF_\lambda: I\to \mathbb{R} be a family of piecewise λ\lambda-affine functions, where each restriction Fλ∣Ii(x)=λx+biF_\lambda|_{I_i}(x)=\lambda x +b_i. Under a generic assumption on the parameters a1,…,ak−1,b1,…,bka_1,\ldots,a_{k-1},b_1,\ldots,b_k which define FλF_\lambda, we prove that, up to a zero Hausdorff dimension set of slopes 0<λ<10<\lambda<1, the ω\omega-limit set of the piecewise λ\lambda-affine map fλ:x∈I→Fλ(x)(mod1)f_\lambda:x\in I \to F_\lambda(x)\pmod{1} at every point equals a periodic orbit and there exist at most kk periodic orbits

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/09/2020