Abstract

We study the previously conjectured form of the physical electron propagator and its allegedly Luttinger type of behavior in the theory of the pseudogap phase of high-temperature copper-oxide superconductors and other effective QED-like models. We demonstrate that, among a whole family of seemingly gauge-invariant functions, the conjectured "stringy ansatz" for the electron propagator is the only one that is truly invariant. However, contrary to the results of the earlier works, it appears to have a negative anomalous dimension, which makes it a rather poor candidate to the role of the physical electron propagator. Instead, we argue that the latter may, in fact, feature a "super-Luttinger" behavior characterized by a faster than any power-law decay: G(x) ~ exp(-const ln^2|x|).Comment: Latex, 10 pages, no figure

    Similar works