research

Long Josephson junctions with spatially inhomogeneous driving

Abstract

The phase dynamics of a long Josephson junction with spatially inhomogeneously distributed bias current is considered for the case of a dense soliton chain (regime of the Flux Flow oscillator). To derive the analytical solution of the corresponding sine-Gordon equation the Poincare method has been used. In the range of the validity of the theory good coincidence between analytically derived and numerically computed current-voltage characteristics have been demonstrated for the simplest example of unitstep function distribution of bias current (unbiased tail). It is shown, that for the considered example of bias current distribution, there is an optimal length of unbiased tail that maximizes the amplitude of the main harmonic and minimizes the dynamical resistance (thus leading to reduction of a linewidth).Comment: 7 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019