research

The Electrostatic Persistence Length of Polymers beyond the OSF Limit

Abstract

We use large scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length lel_e of isolated, uniformly charged polymers with \DH intrachain interactions in the limit where the screening length κ1\kappa^{-1} exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction leκ2l_e\propto\kappa^{-2} by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theory to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We argue that previous numerical results pointing into this direction are probably due to a combination of excluded volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.Comment: 11 pages, 7 figure

    Similar works

    Full text

    thumbnail-image