We discuss some properties of the generalized entropies, called Renyi
entropies and their application to the case of continuous distributions. In
particular it is shown that these measures of complexity can be divergent,
however, their differences are free from these divergences thus enabling them
to be good candidates for the description of the extension and the shape of
continuous distributions. We apply this formalism to the projection of wave
functions onto the coherent state basis, i.e. to the Husimi representation. We
also show how the localization properties of the Husimi distribution on average
can be reconstructed from its marginal distributions that are calculated in
position and momentum space in the case when the phase space has no structure,
i.e. no classical limit can be defined. Numerical simulations on a one
dimensional disordered system corroborate our expectations.Comment: 8 pages with 2 embedded eps figures, RevTex4, AmsMath included,
submitted to PR