We investigate the Rubinstein-Duke model for polymer reptation by means of
density-matrix renormalization group techniques both in absence and presence of
a driving field. In the former case the renewal time \tau and the diffusion
coefficient D are calculated for chains up to N=150 reptons and their scaling
behavior in N is analyzed. Both quantities scale as powers of N: τ∼Nz and D∼1/Nx with the asymptotic exponents z=3 and x=2, in agreement
with the reptation theory. For an intermediate range of lengths, however, the
data are well-fitted by some effective exponents whose values are quite
sensitive to the dynamics of the end reptons. We find 2.7 <z< 3.3 and 1.8 <x<
2.1 for the range of parameters considered and we suggest how to influence the
end reptons dynamics in order to bring out such a behavior. At finite and not
too small driving field, we observe the onset of the so-called band inversion
phenomenon according to which long polymers migrate faster than shorter ones as
opposed to the small field dynamics. For chains in the range of 20 reptons we
present detailed shapes of the reptating chain as function of the driving field
and the end repton dynamics.Comment: RevTeX 12 Pages and 14 figure