We investigate the formation of spiral crack patterns during the desiccation
of thin layers of precipitates in contact with a substrate. This
symmetry-breaking fracturing mode is found to arise naturally not from torsion
forces, but from a propagating stress front induced by the fold-up of the
fragments. We model their formation mechanism using a coarse-grain model for
fragmentation and successfully reproduce the spiral cracks. Fittings of
experimental and simulation data show that the spirals are logarithmic,
corresponding to constant deviation from a circular crack path. Theoretical
aspects of the logarithmic spirals are discussed. In particular we show that
this occurs generally when the crack speed is proportional to the propagating
speed of stress front.Comment: 4 pages, 5 figures, RevTe