Here we investigate the spin-dependent subband structure of newly-developed
Mn-based modulation-doped quantum wells. In the presence of an external
magnetic field, the s-d exchange coupling between carriers and localized d
electrons of the Mn impurities gives rise to large spin splittings resulting in
a magnetic-field dependent subband structure. Within the framework of the
effective-mass approximation, we self-consistently calculate the subband
structure at zero temperature using Density Functional Theory (DFT) with a
Local Spin Density Approximation (LSDA). We present results for the
magnetic-field dependence of the subband structure of shallow ZnSe/ZnCdMnSe
modulation doped quantum wells. Our results show a significant contribution to
the self-consistent potential due to the exchange-correlation term. These
calculations are the first step in the study of a variety of interesting
spin-dependent phenomena, e.g., spin-resolved transport and many-body effects
in polarized two-dimensional electron gases.Comment: 3 pages, 3 postscript figures, submitted to the proceedings of the
10th Brazilian Workshop on Semiconductor Physics (BWSP10