CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Selective optogenetic stimulation of efferent fi bers in the vagus nerve of a large mammal
Authors
GL Ackland
AM Allen
+19 more
Q Boesley
LC Booth
AA Connelly
DGS Farmer
AV Gourine
S-J Guild
SG Hood
S Kasparov
WS Korim
A Korsak
P Le
SC Malpas
S Mastitskaya
CN May
RM McAllen
D McCormick
SJ McDougall
AG Teschemacher
ST Yao
Publication date
17 November 2020
Publisher
'Elsevier BV'
Doi
Abstract
Background: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease. Objective: Here we report a successful application of optogenetics for selective stimulation of vagal efferent activity in a large animal model (sheep). Methods and results: Twelve weeks after viral transduction of a subset of vagal motoneurons, strong axonal membrane expression of the excitatory light-sensitive ion channel ChIEF was achieved in the efferent projections innervating thoracic organs and reaching beyond the level of the diaphragm. Blue laser or LED light (>10 mW mm 2 ; 1 ms pulses) applied to the cervical vagus triggered precisely timed, strong bursts of efferent activity with evoked action potentials propagating at speeds of ~6 m s 1 . Conclusions: These findings demonstrate that in species with a large, multi-fascicled vagus nerve, it is possible to stimulate a specific sub-population of efferent fibers using light at a site remote from the vector delivery, marking an important step towards eventual clinical use of optogenetic technology for autonomic neuromodulation. © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UCL Discovery
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.ucl.ac.uk.OAI2:101...
Last time updated on 04/12/2020
Supporting member
Queen Mary Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:qmro.qmul.ac.uk:123456789/...
Last time updated on 15/04/2021