The Influence of Posture, Applied Force and Perturbation Direction on Hip Joint Viscoelasticity.

Abstract

Limb viscoelasticity is a critical neuromechanical factor used to regulate the interaction with the environment. It plays a key role in modelling human sensorimotor control, and can be used to assess the condition of healthy and neurologically affected individuals. This paper reports the estimation of hip joint viscoelasticity during voluntary force control using a novel device that applies a leg displacement without constraining the hip joint. The influence of hip angle, applied limb force and perturbation direction on the stiffness and viscosity values was studied in ten subjects. No difference was detected in the hip joint stiffness between the dominant and non-dominant legs, but a small dependency was observed on the perturbation direction. Both hip stiffness and viscosity increased monotonically with the applied force magnitude, with posture being observed to have a slight influence. These results are in line with previous measurements carried out on upper limbs, and can be used as a baseline for lower limb movement simulation and further neuromechanical investigations

    Similar works