PIR Array Codes with Optimal Virtual Server Rate

Abstract

There has been much recent interest in Private information Retrieval (PIR) in models where a database is stored across several servers using coding techniques from distributed storage, rather than being simply replicated. In particular, a recent breakthrough result of Fazelli, Vardy and Yaakobi introduces the notion of a PIR code and a PIR array code, and uses this notion to produce efficient PIR protocols. In this paper we are interested in designing PIR array codes. We consider the case when we have mm servers, with each server storing a fraction (1/s)(1/s) of the bits of the database; here ss is a fixed rational number with s>1s > 1. A PIR array code with the kk-PIR property enables a kk-server PIR protocol (with kmk\leq m) to be emulated on mm servers, with the overall storage requirements of the protocol being reduced. The communication complexity of a PIR protocol reduces as kk grows, so the virtual server rate, defined to be k/mk/m, is an important parameter. We study the maximum virtual server rate of a PIR array code with the kk-PIR property. We present upper bounds on the achievable virtual server rate, some constructions, and ideas how to obtain PIR array codes with the highest possible virtual server rate. In particular, we present constructions that asymptotically meet our upper bounds, and the exact largest virtual server rate is obtained when 1<s21 < s \leq 2. A kk-PIR code (and similarly a kk-PIR array code) is also a locally repairable code with symbol availability k1k-1. Such a code ensures kk parallel reads for each information symbol. So the virtual server rate is very closely related to the symbol availability of the code when used as a locally repairable code. The results of this paper are discussed also in this context, where subspace codes also have an important role

    Similar works