Abstract

A Molecular Dynamics simulation of the microscopic structure of water confined in a silica pore is presented. A single cavity in the silica glass has been modeled as to reproduce the main features of the pores of real Vycor glass. A layer analysis of the site-site radial distribution functions evidence the presence in the pore of two subsets of water molecules with different microscopic structure. Molecules which reside in the inner layer, close to the center of the pore, have the same structure as bulk water but at a temperature of 30 K higher. On the contrary the structure of the water molecules in the outer layer, close to the substrate, is strongly influenced by the water-substrate hydrophilic interaction and sensible distortions of the H-bond network and of the orientational correlations between neighboring molecules show up. Lowering the hydration has little effect on the structure of water in the outer layer. The consequences on experimental determinations of the structural properties of water in confinement are discussed.Comment: 6 pages, 8 figures included in the text, one figure added, changes in the tex

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019