Abstract

The effect of the four-spin cyclic exchange interaction at each plaquette in the S=1/2S=1/2 two-leg spin ladder is investigated at T=0, especially focusing on the field-induced gap. The strong rung coupling approximation suggests that it yields a plateau at half of the saturation moment (m=1/2m=1/2) in the magnetization curve, which corresponds to a field-induced spin gap with a spontaneous breaking of the translational symmetry. A precise phase diagram at m=1/2m=1/2 is also presented based on the level spectroscopy analysis of the numerical data obtained by Lanczos method. The boundary between the gapless and plateau phases is confirmed to be of the Kosterlitz-Thouless (KT) universality class.Comment: 10 pages, 3 eps figures (embedded), to be published in J. Phys.: Cond. Matte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 11/12/2019