We present results from a comprehensive analytical and numerical study of
nonequilibrium dynamics in the 2-dimensional complex Ginzburg-Landau (CGL)
equation. In particular, we use spiral defects to characterize the domain
growth law and the evolution morphology. An asymptotic analysis of the
single-spiral correlation function shows a sequence of singularities --
analogous to those seen for time-dependent Ginzburg-Landau (TDGL) models with
O(n) symmetry, where n is even.Comment: 11 pages, 5 figure