Using a standing light wave trap, a stable quasi-one-dimensional attractive
dilute-gas Bose-Einstein condensate can be realized. In a mean-field
approximation, this phenomenon is modeled by the cubic nonlinear Schr\"odinger
equation with attractive nonlinearity and an elliptic function potential of
which a standing light wave is a special case. New families of stationary
solutions are presented. Some of these solutions have neither an analog in the
linear Schr\"odinger equation nor in the integrable nonlinear Schr\"odinger
equation. Their stability is examined using analytic and numerical methods.
Trivial-phase solutions are experimentally stable provided they have nodes and
their density is localized in the troughs of the potential. Stable
time-periodic solutions are also examined.Comment: 12 pages, 18 figure