Abstract

The structural correlation functions of a weakly disordered Abrikosov lattice are calculated in a functional RG-expansion in d=4ϵd=4-\epsilon dimensions. It is shown, that in the asymptotic limit the Abrikosov lattice exhibits still quasi-long-range translational order described by a {\it nonuniversal} exponent ηG\eta_{\bf G} which depends on the ratio of the renormalized elastic constants κ=c66/c11\kappa ={c}_{66}/ {c}_{11} of the flux line (FL) lattice. Our calculations clearly demonstrate three distinct scaling regimes corresponding to the Larkin, the random manifold and the asymptotic Bragg-glass regime. On a wide range of {\it intermediate} length scales the FL displacement correlation function increases as a power law with twice the manifold roughness exponent ζRM(κ)\zeta_{\rm RM}(\kappa) , which is also {\it nonuniversal}. Correlation functions in the asymptotic regime are calculated in their full anisotropic dependencies and various order parameters are examined. Our results, in particular the κ\kappa-dependency of the exponents, are in variance with those of the variational treatment with replica symmetry breaking which allows in principle an experimental discrimination between the two approaches.Comment: 17 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions