Based on recent results in extreme value theory, we use a new technique for
the statistical estimation of distribution tails. Specifically, we use the
Gnedenko-Pickands-Balkema-de Haan theorem, which gives a natural limit law for
peak-over-threshold values in the form of the Generalized Pareto Distribution
(GPD). Useful in finance, insurance, hydrology, we investigate here the
earthquake energy distribution described by the Gutenberg-Richter seismic
moment-frequency law and analyze shallow earthquakes (depth h < 70 km) in the
Harvard catalog over the period 1977-2000 in 18 seismic zones. The whole GPD is
found to approximate the tails of the seismic moment distributions quite well
above moment-magnitudes larger than mW=5.3 and no statistically significant
regional difference is found for subduction and transform seismic zones. We
confirm that the b-value is very different in mid-ocean ridges compared to
other zones (b=1.50=B10.09 versus b=1.00=B10.05 corresponding to a power law
exponent close to 1 versus 2/3) with a very high statistical confidence. We
propose a physical mechanism for this, contrasting slow healing ruptures in
mid-ocean ridges with fast healing ruptures in other zones. Deviations from the
GPD at the very end of the tail are detected in the sample containing
earthquakes from all major subduction zones (sample size of 4985 events). We
propose a new statistical test of significance of such deviations based on the
bootstrap method. The number of events deviating from the tails of GPD in the
studied data sets (15-20 at most) is not sufficient for determining the
functional form of those deviations. Thus, it is practically impossible to give
preference to one of the previously suggested parametric families describing
the ends of tails of seismic moment distributions.Comment: pdf document of 21 pages + 2 tables + 20 figures (ps format) + one
file giving the regionalizatio