We consider the breakdown of conformal and scale invariance in random systems
with strongly random critical points. Extending previous results on
one-dimensional systems, we provide an example of a three-dimensional system
which has a strongly random critical point. The average correlation functions
of this system demonstrate a breakdown of conformal invariance, while the
typical correlation functions demonstrate a breakdown of scale invariance. The
breakdown of conformal invariance is due to the vanishing of the correlation
functions at the infinite disorder fixed point, causing the critical
correlation functions to be controlled by a dangerously irrelevant operator
describing the approach to the fixed point. We relate the computation of
average correlation functions to a problem of persistence in the RG flow.Comment: 9 page