Abstract

We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, τ=4.062570(8)\tau = 4.062570(8), for the growth constant of lattice animals and confirms to a very high degree of certainty that the generating function has a logarithmic divergence. We prove the bound τ>3.90318.\tau > 3.90318. We also calculate the radius of gyration of both lattice animals and polygons enumerated by area. The analysis of the radius of gyration series yields the estimate ν=0.64115(5)\nu = 0.64115(5), for both animals and polygons enumerated by area. The mean perimeter of polygons of area nn is also calculated. A number of new amplitude estimates are given.Comment: 10 pages, 2 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019