research

Light scattering from an amplifying medium bounded by a randomly rough surface: A numerical study

Abstract

We study by numerical simulations the scattering of ss-polarized light from a rough dielectric film deposited on the planar surface of a semi-infinite perfect conductor. The dielectric film is allowed to be either active or passive, situations that we model by assigning negative and positive values, respectively, to the imaginary part ϵ2\epsilon_2 of the dielectric constant of the film. We study the reflectance R{\cal R} and the total scattered energy U{\cal U} for the system as functions of both ϵ2\epsilon_2 and the angle of incidence of the light. Furthermore, the positions and widths of the enhanced backscattering and satellite peaks are discussed. It is found that these peaks become narrower and higher when the amplification of the system is increased, and that their widths scale linearly with ϵ2\epsilon_2. The positions of the backscattering peaks are found to be independent of ϵ2\epsilon_2, while we find a weak dependence on this quantity in the positions of the satellite peaks.Comment: Revtex, 9 pages, 9 figure

    Similar works