Diffusion Limited Aggregation (DLA) is a model of fractal growth that had
attained a paradigmatic status due to its simplicity and its underlying role
for a variety of pattern forming processes. We present a convergent calculation
of the fractal dimension D of DLA based on a renormalization scheme for the
first Laurent coefficient of the conformal map from the unit circle to the
expanding boundary of the fractal cluster. The theory is applicable from very
small (2-3 particles) to asymptotically large (n \to \infty) clusters. The
computed dimension is D=1.713\pm 0.003