slides

Vibration-induced "thermally activated" jamming transition in granular media

Abstract

The quasi-static frequency response of a granular medium is measured by a forced torsion oscillator method, with forcing frequency fpf_{p} in the range 10410^{-4} Hz to 5 Hz, while weak vibrations at high-frequency fsf_{s}, in the range 50 Hz to 200 Hz, are generated by an external shaker. The intensity of vibration, Γ\Gamma , is below the fluidization limit. A loss factor peak is observed in the oscillator response as a function of Γ\Gamma or fpf_{p}. In a plot of lnfp\ln f_{p} against 1/Γ1/\Gamma , the position of the peak follows an Arrhenius-like behaviour over four orders of magnitude in fpf_{p}. The data can be described as a stochastic hopping process involving a probability factor exp(Γj/Γ)\exp(-\Gamma_{j}/\Gamma) with Γj\Gamma_{j} a fsf_{s}-dependent characteristic vibration intensity. A fsf_{s}-independent description is given by exp(τj/τ)\exp(-\tau_{j}/\tau), with τj\tau_{j} an intrinsic characteristic time, and τ=Γn/2πfs\tau =\Gamma ^{n}/2\pi f_{s}, n=0.5-0.6, an empirical control parameter with unit of time. τ\tau is seen as the effective average time during which the perturbed grains can undergo structural rearrangement. The loss factor peak appears as a crossover in the dynamic behaviour of the vibrated granular system, which, at the time-scale 1/fp 1/f_{p}, is solid-like at low Γ\Gamma, and the oscillator is jammed into the granular material, and is fluid-like at high Γ\Gamma, where the oscillator can slide viscously.Comment: Final version to appear in PR

    Similar works

    Full text

    thumbnail-image

    Available Versions