The bound states of two electrons in the adiabatic Holstein-Hubbard model are
studied numerically in one and two dimensions from the anticontinuous limit.
This model involves a competition between a local electron-phonon coupling
(with a classical lattice) which tends to form pairs of electrons and the
repulsive Hubbard interaction U≥0 which tends to break them.
In 1D, the ground-state always consists in a pair of localized polarons in a
singlet state. They are located at the same site for U=0. Increasing U, there
is a first order transition at which the bipolaron becomes a spin singlet pair
of two polarons bounded by a magnetic interaction. The pinning mode of the
bipolaron soften in the vicinity of this transition leading to a higher
mobility of the bipolaron which is tested numerically.
In 2D, and for any U, the electron-phonon coupling needs to be large enough
in order to form small polarons or bipolarons instead of extended electrons. We
calculate the phase diagram of the bipolaron involving first order transitions
lines with a triple point. A pair of polarons can form three types of
bipolarons: a) on a single site at small U, b) a spin singlet state on two
nearest neighbor sites for larger U as in 1D and c) a new intermediate state
obtained as the resonant combination of four 2-sites singlet states sharing a
central site, called quadrisinglet.
The breathing and pinning internal modes of bipolarons in 2D generally only
weakly soften and thus, they are practically not mobile. On the opposite, in
the vicinity of the triple point involving the quadrisinglet, both modes
exhibit a significant softening. However, it was not sufficient for allowing
the existence of a classical mobile bipolaron (at least in that model)